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Purpose: To apply deep convolution neural network to the segmentation task in 
myocardial arterial spin labeled perfusion imaging and to develop methods that 
measure uncertainty and that adapt the convolution neural network model to a spe-
cific false‐positive versus false‐negative tradeoff.
Methods: The Monte Carlo dropout U‐Net was trained on data from 22 subjects and 
tested on data from 6 heart transplant recipients. Manual segmentation and regional 
myocardial blood flow were available for comparison. We consider 2 global uncer-
tainty measures, named “Dice uncertainty” and “Monte Carlo dropout uncertainty,” 
which were calculated with and without the use of manual segmentation, respec-
tively. Tversky loss function with a hyperparameter β was used to adapt the model to 
a specific false‐positive versus false‐negative tradeoff.
Results: The Monte Carlo dropout U‐Net achieved a Dice coefficient of 0.91 ± 
0.04 on the test set. Myocardial blood flow measured using automatic segmentations 
was highly correlated to that measured using the manual segmentation (R2 = 0.96). 
Dice uncertainty and Monte Carlo dropout uncertainty were in good agreement  
(R2 = 0.64). As β increased, the false‐positive rate systematically decreased and 
false‐negative rate systematically increased.
Conclusion: We demonstrate the feasibility of deep convolution neural network for 
automatic segmentation of myocardial arterial spin labeling, with good accuracy. 
We also introduce 2 simple methods for assessing model uncertainty. Finally, we 
demonstrate the ability to adapt the convolution neural network model to a specific 
false‐positive versus false‐negative tradeoff. These findings are directly relevant to 
automatic segmentation in quantitative cardiac MRI and are broadly applicable to 
automatic segmentation problems in diagnostic imaging.
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1 |  INTRODUCTION

Myocardial arterial spin labeling (ASL) is a noncontrast 
quantitative perfusion technique that can assess coronary ar-
tery disease.1 Manual segmentation of left ventricular myo-
cardium is a required step in the postprocessing pipeline and 
is a major bottleneck due to the low and inconsistent SNR 
and blood‐myocardium contrast‐to‐noise ratio (CNR) in the 
source images. More generally, segmentation of left ventric-
ular myocardium is a key step in the postprocessing pipeline 
of all quantitative myocardial imaging. Segmentation masks 
are needed to make volumetric measurements, to provide  
semantic delineation of different tissues (e.g., myocardium 
vs. blood vs. epicardial fat), and in many cases to map  
measurements to a bullseye plot for convenient visualization.2

Convolutional neural networks (CNNs) have been applied 
successfully to automatic segmentation in several MRI appli-
cations.3-6 For example, Bai et al recently demonstrated that 
CNN can provide a performance on par with human experts 
in analyzing cine cardiovascular magnetic resonance (CMR) 
data.5 Cine CMR data typically have high spatial temporal 
resolution, excellent SNR, and consistent blood–myocardium 
CNR throughout the cardiac cycle, which is why cine CMR is 
the gold standard for assessment of ventricular function, vol-
umes, mass, and ejection fraction.7 In contrast to cine CMR, 
quantitative myocardial CMR techniques (e.g., myocardial 
ASL, myocardial BOLD, myocardial first‐pass perfusion, 
multiparametric myocardial relaxometry, myocardial DTI)8-

10 often consist of images with substantially lower spatial res-
olution, SNR, and CNR, which can vary between images due 
to factors such as variability in contrast preparation or heart 
rate. These are all reasons why automatic segmentation in 
quantitative CMR remains a significant challenge.

Automatic segmentation has been developed and used 
for many years,11,12 but the postprocessing pipeline remains 
semi‐automatic, as a human operator is required to verify 
segmentation mask quality before commencing to the next 
step in the pipeline. A global score of model uncertainty is 
therefore desired for automatic quality control at production, 
for model improvement through active learning13 and for out‐
of‐distribution detection. Model uncertainty can be estimated 
using a Bayesian approach, in which not only parameters are 
estimated but also their posterior distributions. Dropout has 
been demonstrated as a Bayesian approximation, which pro-
vides model uncertainty through Monte Carlo (MC) dropout 
at test time.14-16 Monte Carlo dropout has been used to mea-
sure model uncertainty in many segmentation problems.17-20 
These studies demonstrate that pixel‐wise uncertainty maps 
can be achieved using MC dropout (MCD) at test time, which 
allows qualitative assessment of predicted segmentations. A 
global quantitative score for model uncertainty, however, is 
desirable for automating the quality assessment, which may 
enable the automatic postprocessing pipeline.

For quantitative CMR, the America Heart Association  
17‐segment model2 is often used in the form of a bullseye 
plot for visualization and diagnosis. To generate the bulls-
eye plot, segmentation of the left ventricular myocardium is  
required. Left ventricular myocardium is surrounded by ven-
tricular blood pools and epicardial fat, which have distinct 
physical properties as well as spin (magnetization) history.21 
Careful and conservative manual segmentation of myocar-
dium is often required to minimize partial volume effects.22-25 
Therefore, a model with a lower false‐positive rate may be 
preferred over that with a higher false‐positive rate. Note that 
false positive means pixels predicted by an algorithm that 
are not present in the reference segmentation (i.e., excessive 
segmentation).

This study aimed to (1) apply deep CNN for automatic 
segmentation of myocardial ASL data, which have low and 
inconsistent SNR and CNR, (2) measure a global score of 
model uncertainty without the use of the reference segmen-
tation using MCD, and (3) adapt the network to the specific 
false‐positive and false‐negative needs of the application 
using Tversky loss function. Additionally, model uncertainty 
was calculated using the probabilistic U‐Net26 and then com-
pared with that calculated using MCD U‐Net.

2 |  METHODS

2.1 | Network architecture
We implemented a CNN model based on the U‐Net archi-
tecture27 called the MCD U‐Net with the following mod-
ifications: (1) increased filter size from 3 × 3 to 5 × 5, 
(2) added batch normalization28 after every convolutional 
layer, and (3) added dropout15 with dropout rate of 50% 
at the end of every resolution scale (Figure 1). Similar to 
the original U‐Net architecture, the number of base feature 
maps per convolutional layer in the first resolution scale 
was 64, which was doubled and halved in the next reso-
lution scale in the encoding path and the decoding path, 
respectively. The MCD U‐Net was implemented in Keras29 
with TensorFlow30 backend.

2.2 | Data set
Our data set included 478 ASL images (control and labeled 
images) from 22 subjects. These were randomly divided 
into training and validation sets of 438 and 40 images, re-
spectively. Trained networks were tested on 144 unseen 
ASL images acquired at rest and during adenosine stress 
from 6 heart transplant recipients. Training, validation, and 
testing data were drawn from previously published stud-
ies,31-33 in which manual segmentation and quantitative 
reginal myocardial blood flow (MBF) from all subjects 
were readily available.
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The ASL acquisition details are summarized here, and 
a complete description can be found in Do et al.31 Each 
ASL data set consists of 6 pairs of control and labeled im-
ages. Each pair of control and labeled images was acquired 
in a 12‐second breath‐hold using balanced SSFP (bSSFP) 
image acquisition preceded by a flow‐sensitive alternating 
inversion recovery34,35 control (slab‐selective inversion) 
and labeled (nonselective inversion) pulse, respectively. 
The control/labeled pulse and the balanced SSFP image 
acquisition were cardiac‐triggered to occur at middiastole 
in consecutive heartbeats. Balanced SSFP parameters were 
TR/TE = 3.2/1.5 ms, flip angle = 50º, slice thickness = 
10 mm, matrix size = 96 × 96, and parallel acceleration 
factor of 2 for SENSE36 or 1.6 for GRAPPA.37 Buxton’s 
general kinetic model38 was used for MBF quantification. 
Physiological noise was defined as a short‐term variability 
of MBF measurement and calculated as a SD of 6 MBF val-
ues measured from 6 pairs of control and labeled images.39 
The data set was normalized to have zero mean and unit 
variance. No data augmentation was used in the training of 
the MCD U‐Net.

2.3 | Monte Carlo dropout for 
uncertainty measure
The concept of using MCD to evaluate model uncertainty 
was first introduced by Hinton el al in an online lecture14 and 
manuscript,15 respectively. Model uncertainty can be calcu-
lated from a network trained with a dropout rate of 50% in 
every (hidden) layer. At test time, multiple predictions of the 
same input can be obtained by running the stochastic model 
several times. Final prediction and model uncertainty is sim-
ply the mean and SD of the stochastic predictions, respec-
tively. Subsequently, Gal et al16 demonstrated that any neural 
network with dropout added in every weight layer is math-
ematically equivalent to an approximation of the Bayesian 
model. Hence, model uncertainty can be estimated given the 
posterior distribution of the trained weights.

Monte Carlo dropout has been applied to evaluate model 
uncertainty in semantic segmentation tasks in both computer 
vison and medical imaging applications.20,40 In these stud-
ies, the typical output of the model uncertainty is a SD pixel‐ 
by‐pixel map that provides spatial information detailing 
where, within the image, the model is uncertain. However, a 
global quantitative score of model uncertainty on a specific 
input is desired for automatic quality assessment, for triaging 
images for active learning, and for out‐of‐distribution detec-
tion. In this study, we introduce and evaluate 2 global quan-
titative scores of model uncertainty, which are named “Dice 
uncertainty” and “MCD uncertainty.” These are the measures 
of model uncertainty estimated with and without the use of 
manual segmentation, respectively.

2.4 | Tversky loss function for model 
adaptability
Binary cross‐entropy (BCE) and Dice loss functions are often 
used to train a CNN model for automatic segmentation.5,41-43 
The definition of the BCE is as follows:

where K is the total number of pixels in the image, yi and ŷ
1
 

are values of the reference and predicted mask at the ith pixel. 
Below is the definition of Dice loss function:

where A is the predicted segmentation and B is the reference 
segmentation. Alternatively, Dice loss function can also be 
defined in terms of false positive and false negative, as follows:
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TP+0.5 ⋅FP+0.5 ⋅FN
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F I G U R E  1  The network architecture of Monte Carlo dropout (MCD) U‐Net. The modifications are that (1) 5 × 5 filter was used for 
all convolutional layers; (2) batch normalization was added after each convolutional layer; and (3) dropout rate of 50% was added after each 
convolutional scale of the down‐sampled and up‐sampled paths. The number of convolutional kernels is noted on top of the convolutional layers. 
Abbreviations: BN, batch normalization; Conv, convolutional layer; ReLU, rectified linear unit
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where TP is true positive, and FP and FN are false positive 
and false negative, respectively. As we can see from this equa-
tion, Dice coefficient weights false positive and false negative 
equally, which may not be optimal for myocardial segmentation 
because of partial volume effects. Myocardium is surrounded 
by ventricular blood pools and epicardial fat, which have very 
different physical properties and spin (magnetization) history 
compared with myocardium. Therefore, false negative may 
be preferred over false positive. To adapt the network to the 
desired false‐positive versus false‐negative tradeoff, Tversky44 
loss function could be used and is defined as

where β is a hyperparameter that could be set during training. 
By adjusting β during training, one could adapt the network to 
output the specific false‐positive versus false‐negative tradeoff.

2.5 | Experiments
All experiments were performed on a NVIDIA K80 GPU 
with 12 GB of RAM. Network architectures were imple-
mented using Keras29 with TensorFlow backend.30 Common 
training parameters are number of epochs = 150, batch  
size = 12, learning rate = 1−4, dropout rate = 50%, and adap-
tive moment estimation (Adam) optimizer.45

2.5.1 | Accuracy
The MCD U‐Net architecture was trained with Dice loss 
function. Training and validation loss were recorded. Dice 
coefficients of the test set were calculated to evaluate model 
accuracy. Quantitative MBF measured using automatic seg-
mentation was compared against that measured using the ref-
erence manual segmentation using linear regression analysis.

To investigate the efficacy different training procedures, 
MCD U‐Net was also trained on the control images only and 
then fine‐tuned to labeled images. The Dice accuracy was 
then calculated and compared to that from the model trained 
using control and labeled images simultaneously.

2.5.2 | Uncertainty
The MCD U‐Net architecture was trained with Dice loss 
function, and MCD was turned on during inference. At test 
time, MCD inference was applied N = 1115 times (N is the 
number of MC trials) on each and every test image (total of 
144 test images). The mean and SD of 1115 predicted masks 
yielded the final predicted segmentation and pixel‐by‐pixel 
uncertainty map for each test image, respectively.

In this study, we propose 2 global scores of model  
uncertainty: Dice uncertainty and MCD uncertainty, which 

are calculated with and without the use of reference seg-
mentation, respectively. Dice uncertainty is defined as 
the SD of Dice coefficients calculated from N stochastic 
predicted segmentations, given the ground‐truth reference 
segmentation. Higher Dice uncertainty means the model 
is less certain of its predictions and experiences higher 
variability.

Monte Carlo dropout uncertainty provides a global score 
of how certain or uncertain the model is, given an input 
image, and is defined as the sum of values of all pixels in 
the uncertainty map normalized by the volume of the pre-
dicted mask. Similar to the mean squared error or structural 
similarity index, MCD uncertainty is expected to provide a 
global view on how certain or uncertain the model is for a 
specific test image. This potentially allows automatic quality 
assessment of automatic segmentation without the need of 
the reference ground‐truth segmentation, which is typically 
not available at production.

Time penalty is a major consideration when using MCD 
for model uncertainty measure.18 We carried out 2 exper-
iments that studied the effects of the number of MC trials 
and batch size on uncertainty measure and inference time, 
respectively. In the first experiment, we performed MCD on 
1 test case with 16 384 MC trials. Smaller MC trials were 
retrospectively bootstrapped from a distribution of 16 384 
samples 1024 times. This allows calculation of a confidence 
interval (i.e., SD) of uncertainty measure as a function of 
the number of MC trials. In the second experiment, we per-
formed N = 1024 MC trials on a single test case to measure 
inference time, mean prediction, and Dice uncertainty as a 
function of batch size.

2.5.3 | Adaptability
The MCD U‐Net architecture was trained with Tversky loss 
function, which has a hyperparameter β. The MCD U‐Net 
model was trained with 9 different values of β ranging from 
0.1 to 0.9 with step size of 0.1. False‐positive and false‐
negative rates were defined as an average number of false‐
positive and false‐negative pixels per image, respectively. 
False‐positive and false‐negative rates were calculated and 
compared to that from the model trained with BCE loss  
and Dice loss.

To demonstrate the consequence of partial volume  
effects, “thin mask” and “thick mask” were generated using a 
“bwmorph” function in MATLAB, which removes and adds  
1 pixel from both sides of the reference masks in the test set, 
respectively. The average Dice coefficient, false‐positive rate, 
and false‐negative rate were calculated and compared with 
that calculated from CNN models. Quantitative MBF mea-
sured using “thin mask” and “thick mask” were compared 
against that from the reference masks to demonstrate that 
false positive is more detrimental than false negative.

LTversky =1−
TP

TP+(1−�) ⋅FP+� ⋅FN
,
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2.6 | Probabilistic U‐Net
Probabilistic U‐Net (prob U‐Net)26 has recently been pro-
posed for segmentation of ambiguous images including 
medical imaging. The primary goal of the prob U‐Net is to 
efficiently generate many (even infinite) plausible segmen-
tation hypotheses for a given input image. It combines a  
U‐Net architecture with a conditional variational autoen-
coder. Monte Carlo Dropout U‐Net and prob U‐Net are both 
probabilistic models that could generate unlimited number 
of plausible predictions by sampling the posterior distribu-
tions of trained weights and variational latent representation 
(lower‐dimensional space), respectively.

The prob U‐Net46 model was adapted and trained on the 
ASL images with the same data training, validation, and 
testing splits. Training details were similar to the med-
ical imaging example in the original work.26 The train-
ing was performed with randomly initialized weights for 
over 5400 stochastic gradient decent iterations; the initial 
learning rate was 1−4, which was lowered to 5−5 after one‐
third and to 1−5 after two‐thirds of the iterations. Batch 
size was 12. Adam optimizer with default parameters45 
was used in combination with 1−5 multiplier of weight 
decay. In addition to BCE loss, Kullback‐Leibler diver-
gence with a multiplier λ was added to compose the total 
loss. The Kullback‐Leibler divergence penalizes the dif-
ferences between the posterior and the prior distributions. 
Several values of λ (0.1, 0.5, 0.75, 1.0, 2.0, 5.0, and 10.0) 
were tested and λ = 10 was chosen. given the minimum 
validation loss and Kullback‐Leibler divergence. In this 
experiment, 6‐dimensional latent space was used. Random 
elastic deformation and random rotation were used for data 
augmentation.

2.7 | Data analysis

2.7.1 | Accuracy
To access accuracy of the automatic segmentation method, 
Dice coefficients of a test set were calculated. Furthermore, 
MBF calculated using the automatic segmentations was 
compared against that calculated using the reference man-
ual segmentations using linear regression and concordance  
correlation analyses.

To investigate whether there is a correlation between CNR 
and Dice accuracy, CNR was calculated for all images in the 
test set. Linear regression analysis between CNR and Dice 
accuracy was performed.

2.7.2 | Uncertainty measure
For each test case, MCD inference was performed N = 
1115 times resulted in 1115 stochastic predictions. Mean 

predicted segmentation, pixel‐by‐pixel uncertainty map, 
Dice uncertainty, and MCD uncertainty were calculated 
as described previously. Linear regression analysis was 
carried out to study the relationship between Dice uncer-
tainty and MCD uncertainty. Linear regression analysis 
was performed to determine whether there is a relationship 
between MCD uncertainty and physiological noise of the 
MBF measurement.

2.7.3 | Adaptability
False‐positive and false‐negative rate, defined as an average 
number of false‐positive and false‐negative pixels per image, 
were calculated given the reference masks and predicted 
masks. False‐positive and false‐negative rate from networks 
trained with BCE, Dice, and Tversky losses and that from the 
“thick mask” and “thin mask” were compared.

2.7.4 | Probabilistic U‐Net
For each test case, prob U‐Net was inferenced N = 128 times, 
resulting in 128 stochastic predictions. Mean predicted seg-
mentation, pixel‐wise uncertainty map, Dice uncertainty, 
and MCD uncertainty associated with prob U‐Net were 
calculated in the same manner as those for MCD U‐Net. 
Dice accuracy associated with prob U‐Net was calculated 
and compared with that of MCD U‐Net. Linear regression 
analysis was carried out to study the relationship between 
Dice uncertainty and MCD uncertainty calculated from prob  
U‐Net. Furthermore, MCD uncertainty calculated using 
MCD U‐Net and prob U‐Net were compared using linear  
regression analysis.

3 |  RESULTS

3.1 | Accuracy
The model was trained for 150 epochs. The training and 
validation loss are shown in Supporting Information 
Figure S1. Representative segmentation masks and MBF 
maps generated using the CNN model in comparison with 
that using manual segmentation are shown in Figure 2. The 
average Dice coefficient for the test set was 0.91 ± 0.04. 
For quantitative imaging, accuracy assessment using clini-
cally relevant quantity is desired. Quantitative regional 
MBF measured using automatic segmentation is highly 
correlated with that calculated using manual segmentation  
(R2 = 0.96; Figure 3). The concordance correlation coef-
ficient was 0.98.

Examples of control and labeled images are shown in 
Supporting Information Figure S2. The average CNR of con-
trol and labeled images were 21.44 ± 3.81 and 6.46 ± 1.03, 
respectively. The average Dice accuracy from the control 
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images (0.92 ± 0.02) was significantly higher than that  
(0.90 ± 0.04) from the labeled images (P < .001); however, 
the difference was small. There was no significant correlation 
between CNR and Dice accuracy (R2 = 0.09).

As indicated in Table 1, the model trained using control and 
labeled images simultaneously demonstrated higher Dice ac-
curacy compared with that obtained from the model trained on 
the control images and then fine‐tuned on the labeled images.

3.2 | Uncertainty
Given the manual segmentation, the Dice coefficient 
distributions calculated from 2 test cases are shown in 
Figure 4 and in Supporting Information Figure S3. Dice 
coefficient distributions of 4 other test cases are shown 
in Supporting Information Figure S4. The variance of the 
Dice coefficient distribution represents how the stochas-
tic predictions fluctuate. Therefore, we proposed to use 
the SD (named Dice uncertainty) of the Dice coefficient 
distribution as a measure of model uncertainty, given the 
manual segmentation.

F I G U R E  2  Examples of image quality, segmentation, and myocardial blood flow (MBF) maps. Shown are representative control images (A), 
labeled images (B), and regional MBF (C) maps. Segmentation masks and MBF maps generated by the convolution neural network (CNN; top row) 
are comparable to those from manual segmentation (bottom row)

F I G U R E  3  Evaluation of automatic segmentation. Regional 
MBF measured using automatic segmentation (y‐axis) is highly 
correlated with that measured using manual segmentation (x‐axis) 
(R2 = 0.96). The concordance correlation coefficient was 0.98

Pretrain with control images and fine‐tune with the labeled images

Train with both control and labeled imagesWithout fine‐tuning Fine‐tuning

Control Labeled Labeled Control Labeled

Dice accuracy 0.87 ± 0.04 0.14 ± 0.08 0.86 ± 0.06 0.92 ± 0.02 0.90 ± 0.04

T A B L E  1  Comparison of Dice accuracy from the 2 training procedures
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Dice uncertainty and MCD uncertainty are in good agree-
ment (R2 = 0.64; Figure 5A). Dice uncertainty is defined 
as the SD of Dice coefficients calculated from N stochastic 
predicted segmentations, given the ground‐truth reference 
segmentation. Higher Dice uncertainty means the model is 
less certain of its predictions and experiences higher variabil-
ity. Calculation of Dice uncertainty requires the use of the 
ground‐truth segmentation, which is often not available at 
production. Therefore, we proposed MCD uncertainty as an 
alternative that is calculated without the use of the ground‐
truth segmentation. The goal of Figure 5A is to demonstrate 
that MCD uncertainty also represents model uncertainty.

Figure 5B,C shows the predicted segmentation and un-
certainty map of a test case with low global uncertainty 
score (blue circle in Figure 5A). In the test case with low 
uncertainty, the automatic segmentation (yellow lines) is in 
good agreement with the manual segmentation (green lines).  
Figure 5D,E shows the predicted segmentation and uncer-
tainty map of a test case with high global uncertainty score 

(red circle in Figure 5A). In this case, discrepancies (yellow 
arrows) can be seen between the automatic segmentation and 
the manual segmentation. Additionally, the model uncer-
tainty map provides spatial information when the model is 
most uncertain, as seen in the area indicated by the yellow  
arrows. Monte Carlo dropout uncertainty is weakly correlated 
(R2 = 0.13) to physiological noise, as seen in Supporting 
Information Figure S5.

As batch size increases, inference time is significantly  
decreased (Supporting Information Figure S6A) without  
altering the mean prediction and uncertainty measure, as seen 
in Supporting Information Figure S6B. The time reduction 
experienced diminishing return around a batch size of 256 
with the 12‐GB‐memory NVIDIA K80 GPU used in this 
study. With a more powerful GPU, the inference time is ex-
pected to be further decreased by using a larger batch size.

As the number of MC trials decreases, the confidence in 
uncertainty estimation is decreased, as seen in Figure 6. In 
this study, we simply chose N = 1115 MC trials for our un-
certainty analysis; however, it is worth noting that there is 
a trade‐off between inference time and confidence interval 
of uncertainty measure, and N larger than 100 can provide 
accurate uncertainty measure.

3.3 | Adaptability
Supporting Information Figure S7 shows an example of a 
“thin mask,” a ”thick mask,” and a reference manual mask. 
Thin mask and thick mask data have very similar Dice coef-
ficients, which are 0.80 ± 0.04 and 0.81 ± 0.02, respectively. 
However, the false‐positive and false‐negative rates are 
completely opposite (Figure 7). Thin mask had a negligible  
effect on the endpoint clinically relevant quantitative MBF, 
whereas thick mask introduced a significant overestimation, 

F I G U R E  4  Illustration of the proposed Dice uncertainty metric. 
Shown are the Dice coefficient distributions of 2 test cases after 
MCD inference. The distribution is broader in the test case with high 
uncertainty (red) compared to that with low uncertainty (blue)

F I G U R E  5  Uncertainty metrics. A, Dice uncertainty (x‐axis) and MCD uncertainty (y‐axis) are correlated (R2 = 0.637). Examples of 
predicted segmentations and uncertainty maps of test cases with low (B,C; blue circle in [A]) and high (D,E; red circle in [A]) uncertainty are 
shown. Manual segmentations are in green and automatic segmentations are in yellow. In the high uncertainty case, the uncertainty map (E) 
provides the specific spatial locations where the model is most uncertain, which aligns with segmentation errors (D), identified by yellow arrows
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as shown in Supporting Information Figure S7D,E, respec-
tively. The overestimation is a consequence of partial vol-
ume effects (i.e., contamination signal from ventricular blood 
pools and/or epicardial fat).

Supporting Information Figure S8A,B shows the number 
of false‐positive pixels subtracted by number of false‐neg-
ative pixels and average Dice coefficient for the entire test 
set as a function of β. Figure 7 demonstrates the adaptabil-
ity of the CNN trained with Tversky loss function. As β 
increases, false‐positive and false‐negative rates are mono-
tonically decreasing and increasing, respectively. By varying 
β during training, specific false‐positive versus false‐negative 
tradeoffs can be made. For comparison purposes, the false‐
positive and false‐negative rate from the thin mask, thick 
mask, and CNN models trained with BCE and Dice loss are 
shown in Figure 7.

3.4 | Probability U‐Net
The averaged Dice coefficient from the test set was 0.86 ± 0.04,  
which is lower than that obtained from MCD U‐Net  

(0.91 ± 0.04). Analysis similar to that in Figure 5A was 
performed for prob U‐Net. The resulting linear regression 
analysis shows a weaker correlation (R2 = 0.18) between 
Dice uncertainty and MCD uncertainty using prob U‐Net. 
Furthermore, there was no correlation between MCD  
uncertainty calculated using MCD U‐Net and prob U‐Net 
(R2 = 0.0021).

4 |  DISCUSSION

The contributions of this manuscript are 3‐fold. First, we 
demonstrated that it is possible to train a single CNN model 
to segment control and labeled ASL images, which have 
substantially different SNR, CNR, and contrast, and whose 
contrast may vary substantially among images due to heart‐
rate variation. This challenges a common view that a CNN 
model must be tailored to a specific contrast (with the help of 
transfer learning). Second, we introduce and evaluate 2 novel  
approaches to measure model uncertainty. We denote these 
as Dice uncertainty and MCD uncertainty, and calculate them 

F I G U R E  7  Impact of β on the false‐
positive (left y‐axis) and false‐negative 
(right y‐axis) rate. Tversky loss function 
with different β shows a range of false‐
positive versus false‐negative tradeoff. 
For quantitative cardiovascular magnetic 
resonance, β larger than 0.5 may be 
preferred. Abbreviation: BCE, binary cross‐
entropy

F I G U R E  6  Impact of the number of Monte Carlo (MC) trials (x‐axis) on normalized uncertainty measure (y‐axis) from a test case with high 
uncertainty (A) and another case with low uncertainty (B). Mean (black line) ± 1 SD (shaded pink) is plotted. Note that more than 100 Monte Carlo 
trials are needed to achieve accurate uncertainty measures
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with and without the need for reference manual segmenta-
tion, respectively. Monte Carlo dropout uncertainty may  
be valuable for automatic quality control at production, 
model improvement through active learning, and/or out‐ 
of‐distribution detection. Third, we introduce the use of 
Tversky loss function to adapt the CNN to specific false‐
positive versus false‐negative needs of an application. This 
is useful for quantitative cardiac MRI, as left ventricular 
myocardium is surrounded by blood pool and epicardial fat, 
which have distinct physical properties and spin history com-
pared with that of myocardium.

4.1 | Accuracy
The proposed model achieved good Dice accuracy of  
0.91 ± 0.04, similar to that reported in the literature.5,47-49 This 
was in spite of facing additional challenges compared with 
cardiac cine imaging, namely (1) lower spatial resolution, (2) 
lower and inconsistent SNR and blood–myocardium CNR, 
and (3) SNR and CNR differences between the control and  
labeled series. Our study also found the quantitative MBF 
measured using automatic segmentation to be highly correlated 
with MBF measured using manual segmentation (R2 = 0.96).

4.2 | Uncertainty
Spatial uncertainty maps were calculated as the SD of all 
stochastic predictions. A global uncertainty score is needed 
to perform automatic quality assessment without a human 
observer. In this study, we introduced and evaluated 2 sim-
ple yet intuitive approaches, denoted as Dice uncertainty and 
MCD uncertainty. These were calculated with and without 
the need for manual segmentation, respectively. We dem-
onstrated that Dice uncertainty and MCD uncertainty were 
in good agreement (R2 = 0.64). Dice uncertainty intuitively 
represents model uncertainty, suggesting that MCD uncer-
tainty also represents model uncertainty on an input image. 
Monte Carlo dropout uncertainty does not require the use 
of reference segmentation; therefore, it could be used for  
automatic quality control, for automatic triage of images for  
active learning, and for out‐of‐distribution detection.

Uncertainty measures fit several clinical scenarios. In 
the context of image segmentation, many so‐called “auto-
matic” segmentation methods are not “fully automatic,” 
because there lacks a quality metric that could inform the 
user on how confident the prediction is. Consequently, the 
human operator often has to review every segmentation 
generated by an algorithm before beginning the next step 
in the postprocessing pipeline (i.e., quantification step). 
This is still an open challenge for the medical imaging 
community. This work attempted to address the challenge 
by introducing the MCD uncertainty measure that may 
enable a “fully automatic” postprocessing pipeline, as the 

human operator may only need to double‐check cases with 
high uncertainty. Human intervention in the highly uncer-
tain cases helps to prevent propagations of segmentation 
error/uncertainty to the perfusion quantification step in the 
first place, avoiding the possibilities that uncertainty/errors 
from the segmentation step confound the integrity of the 
myocardial perfusion quantification.

There is a time penalty for using MCD to compute uncer-
tainty. This study demonstrated that increased batch size sig-
nificantly decreased inference time without altering the mean 
prediction and uncertainty measure, as shown in Supporting 
Information Figure S6. A batch size of 64 or 128 yielded the 
minimum inference time. given the GPU used in this study 
(NVIDIA K80 GPU). With more powerful GPUs, it is likely 
that a larger batch size will be feasible and provide shorter in-
ference time. A complimentary approach to reduce inference 
time is to use a smaller number of MC trials. Figure 6 demon-
strates the confidence of the uncertainty measure versus the 
number of MC trials (i.e., inference time). One SD of less 
than 2% from the expected uncertainty measure was observed 
with the number of MC trials larger than 1000. In this work, 
MC trials of 1115 were used to calculate uncertainty metrics; 
however, accurate uncertainty calculation is achieved with 
MC trials around 100.

There are additional measures of model uncertainty 
that remain to be explored. Teye et al demonstrated that 
Bayesian uncertainty could be estimated from batch‐ 
normalized deep networks.50 Ayhan et al demonstrated that 
model uncertainty could be measured using test‐time aug-
mentation.51 Like MCD, these methods are efficient and 
practical, requiring no modification to the existing network 
architecture. Monte Carlo dropout may be the most effi-
cient among the 3, as it does not require any postprocess-
ing (i.e., data augmentation or mini‐batch preparation). 
Furthermore, a single input can be replicated and bundled 
in a mini batch, which is very graphics processing unit 
(GPU)‐efficient. Higher computational capacity allows for 
larger possible batch sizes, leading to significantly reduced 
MC inference times.

This work considered only 2 uncertainty metrics, Dice 
uncertainty and MCD uncertainty, which are both calcu-
lated using the variance of the outputs. Neither captures 
pixel correlations or non‐Gaussianity of the output distri-
bution. Further research is needed to investigate metrics 
that capture pixel correlations and/or consider higher‐order 
statistics of the output distribution, such as skewness and 
kurtosis, which would account for asymmetry and tail  
extremity, respectively.

4.3 | Adaptability
Quantitative myocardial measurements can be easily biased 
if there is even a small contamination with signal from the 
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ventricular blood pool and/or epicardial fat. To improve diag-
nostic efficacy, false positive may be penalized heavier than 
false negative during training, leading to a model favorably 
producing output predictions with a lower false‐positive rate. 
In this study, we demonstrated that model adaptability could 
be achieved using Tversky loss function.

The false‐positive and false‐negative rate produced by 
a network depends on the false‐positive and false‐negative 
weighting in the loss function. Dice loss function weights 
false positive and false negative equally, which is why we 
observed that false‐positive and false‐negative rate from a 
network trained with Dice loss are very similar, as shown 
in Figure 7. On the other hand, false negative is weighted 
heavier in BCE loss function, leading to a false‐positive 
rate that is higher than the false‐negative rate. Tversky loss 
function is a generalized form of Dice loss function with a 
hyperparameter β that controls the false‐positive versus false‐
negative tradeoff. As shown in Figure 7, the network trained 
with Tversky loss function was able to produce ranges of 
false‐positive versus false‐negative tradeoff. For quantitative 
CMR, including myocardial ASL, β larger than 0.5 may be 
favorable. The false‐positive versus false‐negative tradeoff of 
a network could be adapted more broadly in 2D space with 
2 positive hyperparameters, which independently weight 
false‐positive and false‐negative terms in the Tversky loss 
function.

4.4 | Probability U‐Net
The prob U‐Net is an innovative and attractive concept, as 
it can accurately produce many (even infinitely) plausible 
hypotheses, given an input image. That is especially useful 
for ambiguous images including medical imaging. One open 
question for prob U‐Net is how to evaluate the quality of each 
and every plausible hypothesis, to identify the best prediction 
given an input image. For analyzing results obtained from 
prob U‐Net, we simply used the similar methods as in MCD 
U‐Net to calculate the mean prediction, uncertainty map, 
Dice uncertainty and MCD uncertainty, and compared them 
to that calculated from MCD U‐Net. We hypothesize that the 
reason for lower Dice accuracy of prob U‐Net (compared 
with MCD U‐Net) is that it is not designed to predict the best 
(i.e., prediction with least BCE or Dice loss) but rather to 
generate many plausible predictions.

4.5 | Limitations
The primary limitation of this study is that it was per-
formed on a relatively small sample size collected from a 
single MRI vendor, a single institution, and a single graphi-
cal prescription protocol (mid short‐axis). This is primarily 
because ASL‐based human myocardial perfusion imaging 
is an emerging and still experimental technique. Although 

the sample size is small in absolute terms, it is among the 
largest myocardial ASL data sets from human subjects to 
date. This study is also based on the U‐Net model, which 
has been validated in many medical applications. Dice  
accuracy on the unseen test set was consistent with those 
reported in the literature.5,47-49 Model retraining is often 
required when applied to different data sets, tasks, or  
applications, even with large training data.5 Therefore, we 
expect that the results from this study can be translated to 
more variable data sets or other CMR applications through 
retraining.

5 |  CONCLUSIONS

We demonstrate the feasibility of deep CNN fully automatic 
segmentation of the left ventricular myocardium in myocar-
dial ASL perfusion imaging, with good accuracy in terms of 
Dice coefficients and regional MBF quantification. We intro-
duce 2 simple yet powerful methods for measuring a global 
uncertainty score, both with and without the use of manual 
segmentation, named Dice uncertainty and MCD uncer-
tainty, respectively. We also demonstrate the ability to adapt 
the CNN model to a specific false‐positive versus false‐nega-
tive tradeoff using the Tversky loss function. These findings 
are directly relevant to automatic segmentation in quantita-
tive cardiac MRI and are broadly applicable to automatic seg-
mentation problems in diagnostic imaging.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section.

FIGURE S1 Training and validation loss
FIGURE S2 Data characteristics of myocardial arterial spin 
labeling (ASL). Representative examples of labeled (A) and 
control (B) images from the test set. Labeled and control 
images are distinctly different in SNR and contrast‐to‐noise 
ratio (CNR). The SNR and CNR within each image type are 
variable due to changes in heart rate during experiments and 
from patient to patient. Abbreviations: RV, right ventricle; 
LV, left ventricle
FIGURE S3 Dice coefficients calculated from N = 1115 
stochastic predictions associated with 2 representative test 
cases in Figure 4, which have low uncertainty (blue circles) 
and high uncertainty (red triangles)
FIGURE S4 Dice coefficient distributions of 4 other test 
cases
FIGURE S5 Monte Carlo dropout uncertainty versus physio-
logical noise (PN). The MCD uncertainty is weakly correlated 
(R2 = 0.13) to PN
FIGURE S6 Monte Carlo dropout inference time with dif-
ferent batch size (N = 1024 MC trials). Inference time is 
significantly reduced with increase in batch size (A) without 
alteration to uncertainty measure (B)
FIGURE S7 Demonstration of partial‐volume effects. “Thin 
mask” (A) and “thick mask” (C) were generated using the 
bwmorph MATLAB function, which removes and adds 
1 pixel from both sides of the manual mask (B), respectively. 
Despite having distinctly different false‐positive and false‐
negative rates, the thin mask and thick mask data have very 
similar mean Dice coefficients, which is approximately 0.8. 
D, Thin mask does not introduce any bias into the endpoint 
quantitative MBF measure. E, However, significant overesti-
mation was observed with thick mask due to the partial‐vol-
ume effects
FIGURE S8 Number of false‐positive (FP) pixels subtracted 
by the number of false‐negative (FN) pixels (A) and average 
Dice coefficient (B) on a test set as a function of β, which is 
the hyperparameter in the Tversky loss function

How to cite this article: Do HP, Guo Y, Yoon AJ, 
Nayak KS. Accuracy, uncertainty, and adaptability of 
automatic myocardial ASL segmentation using  
deep CNN. Magn Reson Med. 2020;83:1863–1874.  
https ://doi.org/10.1002/mrm.28043 

https://github.com/SimonKohl/probabilistic_unet
https://github.com/SimonKohl/probabilistic_unet
https://doi.org/10.1002/mrm.28043

