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Intro(1): CNN for segmentation

• Comparable to human experts in analyzing cardiac CINE data1

• Dice Coef. of 0.94 for LV blood pool

• Dice Coef. of 0.88 for LV myocardium

• Dice Coef. of 0.90 for RV blood pool

1. Bai, Wenjia et al. "Automated CMR image analysis with fully convolutional networks." Journal of Cardiovascular Magnetic Resonance 20.1 (2018): 65. 3



Goals

1. To apply CNN for segmentation of myocardial Arterial Spin Labeled 
(ASL) data

2. To measure model uncertainty using Monte Carlo dropout

3. To adapt the CNN model to the desired trade-off between false 
positive (FP) and false negative (FN) using Tversky loss function
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Intro(2): Myocardial Arterial Spin Labeling (ASL)

1. Kober, Frank et al. "Myocardial arterial spin labeling." Journal of Cardiovascular Magnetic Resonance 2016; 18:22.

2. Zun, Zungho et al., “ ASL-CMR Detects Clinically Relevant Increases in Myocardial Blood Flow With Vasodilation.” iJACC 2011; 4(12):1253-1261.
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Intro(3): Characteristics of ASL data

• Low resolution

• Low SNR and CNR

• Varying SNR and CNR
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Intro(4): Partial volume effects

• Ventricular blood and epicardial fat have different physical properties 
and spin history compared to myocardium.

1. Wikimedia Commons contributors, "File:Heart normal short axis section.jpg," Wikimedia Commons, the free media repository, (accessed October 11, 2018). 7
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Intro(5): Why model uncertainty?

• Quality control during production/deployment

• Model improvement via active learning

1. Diagram adapted from https://www.oreilly.com/ideas/data-preparation-in-the-age-of-deep-learning. 8
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Methods(1): Network Architecture1

5x5 Conv+ReLU+BN 1x1 Conv+Sigmoid

C Channel Concatenation

Max Pooling UpsamplingMonte Carlo Dropout
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1. Ronneberger O et al., "U-net: Convolutional networks for biomedical image segmentation." 2015; arXiv:1505.04597. 9

loss = Binary Cross-Entropy or (1 – Soft-Dice) or (1 – Tversky Index)



Methods(2): Dataset and training parameters

• Training and validation data1:
• From 22 subjects: 478 images – 438/40 images  for training/validation

• Test data1:
• From 6 “un-seen” heart transplant patients: 144 images (rest and during 

Adenosine stress)

• Training parameters:
• 150 epochs

• Learning rate: 1e-4

• Dropout rate: 0.5

• Batch size = 12

• Adam optimizer

1. Do, Hung et al, “Double-gated Myocardial ASL Perfusion Imaging is Robust to Heart Rate Variation.” Magn Reson Med 2017; 77(5):1975-1980. 10



Methods(4): Adaptability using Tversky loss

1. Tversky, Amos. "Features of similarity." Psychological Review 1977;84(4): 327-52. 

2. Wikipedia contributors. "Jaccard index." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 20 Sep. 2018. Web. 5 Oct. 2018.
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Results(1): Accuracy – Dice Coefficient
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Results(1): Accuracy – Myocardial Blood Flow (MBF)
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Results(2): Uncertainty
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Batch Size = 64

~1.5s/image with 128 MC trials



Results(3): Adaptability – Partial volume effects
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Results(3): Adaptability – desired FP and FN trade-off
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Discussion and Conclusions
• Feasibility to train the CNN model on data with low and varying SNR and CNR

• Ability to estimate model uncertainty for quality control and active learning

• Ability to adapt the network to the desired False Positive and False Negative tradeoff

 Applicable to other quantitative CMR: 
• First-pass, T1, T2, T2*, T1rho, DTI, MTR, MRE, etc.
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1. Do, Hung et al. "Myocardial ASL Perfusion Imaging using MOLLI." Proc. ISMRM 24th Scientific Sessions, Singapore, May 2016, p3142.

2. Alam, Shirjel et al. "Vascular and plaque imaging with USPIO." Journal of Cardiovascular Magnetic Resonance 17.1 (2015): 83.
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For over 100 years, the Canon Medical Systems `Made for Life’ philosophy prevails as our ongoing commitment 

to humanity. Generations of inherited passion creates a legacy of medical innovation and service that 

continues to evolve as we do. By engaging the brilliant minds of many, we continue to set the benchmark, 

because we believe quality of life should be a given, not the exception.

Thank you for your attention!
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Methods(3): dropout1

1. Srivastava et al., “Dropout: A simple way to prevent NN from overfitting.” JMLR 2014.

2. Animation is adapted from https://www.techemergence.com/what-is-machine-learning/
24
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Intro(3): Data characteristics of ASL

• Low SNR and contrast

1. Zungho Zun et al. “Assessment of myocardial blood flow in humans using arterial spin labeling: feasibility and SNR requirements.” MRM2009;62(4):975-83. 25

Control/Labeled 
Pulse Imaging

LV

RV



Methods(3): Uncertainty measure using MC dropout1

1. Gal, Yarin et al. "Dropout as a Bayesian approximation: Representing model uncertainty in deep learning." International conference on ML 2016; 1050-1059. 26

• Any NN, with dropout applied before every weight layer, is 
mathematically equivalent to an approximation of the Bayesian model.

• Model uncertainty can be estimated given the posterior distribution of 
the trained weights



Methods(3): Uncertainty measure using MC dropout1

1. Srivastava et al., “Dropout: A simple way to prevent NN from overfitting.” JMLR 2014. 

2. Hinton, Geoffrey, “Lecture 10.5 – Dropout: An efficient way to combine neural nets.” COURSERA: Neural Networks for Machine Learning 2012: 33-41. 
27

• “Use dropout of 0.5 in every hidden layer”

• “At test time, run the stochastic model several times on the same input”
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~1.5s/image with 128 MC trials

Batch Size = 64



Figure 2: worst and best
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