ISMRM/SCMR co-provided Workshop on the Emerging Role of Machine Learning in CMR, Seattle, WA, Feb 6-7, 2019

dnoiseNET: Deep CNN for image denoising

<u>Hung P. Do¹</u>, Andrew J. Yoon², and Krishna S. Nayak³

¹Canon Medical Systems USA, Inc. ²Long Beach Memorial Medical Center, University of California Irvine ³University of Southern California

CANON MEDICAL SYSTEMS USA, INC.

Declaration of Financial Interests or Relationships

Speaker Name: Hung Do

Company Name: Canon Medical Systems USA, Inc. (formerly Toshiba Medical)

Type of Relationship: Employee

Canon

SNR in MRI

Shorter acquisition time

Shorter breath-holdLess sensitive to motions

Uncertainty $\sim \frac{1}{SNR}$

Higher SNR

- Image quality
- Visualization
- Down-stream postprocessing

Higher resolution

(sm)

E 1200

0

0

 Less partial volume effects

-2

pixels

Quantitative CMR

• Relaxometry: T1, T2, T2*, T1rho DWI, DTI, IVIM

ASL

- Diffusion:
- Perfusion:
- PDFF • Water-Fat:

Improved SNR \rightarrow lower uncertainty

SASHA T1 Mapping

Canon

Low-field MRI

Shorter acquisition time

- Reduced cost
- Patient comfort
- Field homogeneities

Higher SNR

Higher resolution

 $SNR \sim B_0^{\frac{3}{2}}$

- 1. Shams Rashid, et al. "Cardiac bSSFP MRI at 0.35 T." Quant Imaging Med Surg 2018;8(7):627-636
- 2. Jose Marques, et al., "Low-field MRI: An MR Physics Perspective." Journal of Magnetic Resonance Imaging 2019

Motivation

Shorter acquisition time

- 1. Shams Rashid, et al. "Cardiac bSSFP MRI at 0.35 T." Quant Imaging Med Surg 2018;8(7):627-636
- 2. Jose Marques, et al., "Low-field MRI: An MR Physics Perspective." Journal of Magnetic Resonance Imaging 2019

NLM and BM3D

Non-local Mean (MLM)

 Average based on self-similarity instead of distance (i.e. "non-local")

Limitations

- Slow
- Required human inputs

BM3D algorithm

- Block matching -> 3D stack
- Shrinkage in the sparse 3D transformed domain (Wavelet)

- 1. Antoni Buades, et al. "Non-local Mean." Computer Vision and Pattern Recognition CVPR 2005.
- **2. Kostadin Dabov,** et al. "BM3D." *IEEE Transactions on image processing* **2007;16(8):2080-2095.**

dnCNN (residual learning)

Noisy Image

Residual Image

(a) Input Image

(b) Output Residual Image

(c) Restored Image

Canon

1. Kai Zhang, et al. "dnCNN." *IEEE Transactions on Image Processing* **2017;26(7):3142-3155.**

U-NET (skip connection)

Canon

9

1. Kai Zhang, et al. "dnCNN." IEEE Transactions on Image Processing 2017;26(7):3142-3155.

2. Olaf Ronneberger, et al. "U-NET." MICCAI, Springer, Cham, 2015;p234-241.

Myocardial ASL Data

- Training and validation data¹:
 - From 22 subjects: 438/40 images for training/validation
- Test data¹:
 - From 6 heart transplant patients: 144 images for testing
- i.i.d Gaussian noise was added to magnitude images

Canon

1. Hung Do, et al. Magnetic Resonance in Medicine 2017;77(5):1975-1980.

Quality assessment: MSE, SSIM, and PSNR

Canon

Mean ± SD from 144 images in the test set

$MSE = 10^{-3} x$	29.4 ± 40.0	4.8 ± 5.7	3.8 ± 4.3	4.2 ± 4.9	2.7 ± 2.6
SSIM =	0.40 ± 0.15	0.62 ± 0.10	0.67 ± 0.12	0.66 ± 0.12	0.72 ± 0.10
PSNR =	18.6 ± 5.5	25.2 ± 4.1	26.4 ± 4.3	26.0 ± 4.5	27.6 ± 4.1

Task-specific quality assessment

Reference MBF (ml/g/min)

Negligible bias to measured MBF

denoised method

MBF from

Raw MR images from MOLLI 5(3s)3

T1 map (ms)

Improved SNR \rightarrow lower uncertainty

Camon

% increase in T1 – rest and stress T1

16

T1 Mapping at simulated 0.35 Tesla

T1 Mapping at simulated 0.35 Tesla

Conclusions

dnoiseNET: Residual learning and skip connections

- Superior performance in term of MSE, PSNR, SSIM
- More importantly, it does not introduce any significant bias to quantitative MBF

Quality Assessment:

- MSE, PSNR, SSIM may not be sufficient for quality assessment
- Task-specific quality assessment is desired (MBF in this work)

Future works:

- Low-field MRI
- Other type of noise distributions (Rician, Parallel Imaging Noise, and residual artifacts from under sampled data, etc.)

Canon

Acknowledgements

Funding:

- Whittier Foundation
- NIH/NHLBI, #1R01HL130494-01A1

Made For life

For over 100 years, the Canon Medical Systems `Made for Life' philosophy prevails as our ongoing commitment to humanity. Generations of inherited passion creates a legacy of medical innovation and service that continues to evolve as we do. By engaging the brilliant minds of many, we continue to set the benchmark, because we believe quality of life should be a given, not the exception.

Accuracy vs. Precision

- 1. Spatial average over ROI $\rightarrow T_1^{\text{REF}}$
- 2. Spatial average over ROI $\rightarrow T_1^{PROP}(t_n)$
- 3. Spatial SD over ROI \rightarrow SD(T₁^{PROP}(t_n))
- 4. Accuracy = time average of $abs(T_1^{REF} T_1^{PROP}(t_n))$
- 5. Bias = $\underline{T_1^{REF}}$ time average of $\underline{T_1^{PROP}(t_n)}$
- 6. Precision = time average of $SD(T_1^{PROP}(t_n))$
- 7. Reproducibility = SD of $T_1^{PROP}(t_n)$

USC

com/content/15/1/56/figure/F1).

Skip connection

Total citations Cited by 16660

Canon

1. Kaiming He, et al. "ResNet." CVPR 2016;p770-778.

Methods(1): Myocardial Arterial Spin Labeling (ASL)

Coronary artery disease (CAD)

Canon

Kober, Frank et al. "Myocardial arterial spin labeling." Journal of Cardiovascular Magnetic Resonance 2016; 18:22.
Zun, Zungho et al., "ASL-CMR Detects Clinically Relevant Increases in Myocardial Blood Flow With Vasodilation." iJACC 2011; 4(12):1253-1261.