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SNR in MR

Shorter acquisition time
» Shorter breath-hold
* Less sensitive to motions

1
Uncertainty ~

SNR
Higher SNR Higher resolution
* Image quality * Less partial
» Visualization volume effects B8
* Down-stream post-
processing :

1. Peter Kellman, et al. Journal of Cardiovascular Magnetic Resonance 2014;16:55 & 2014;16:2



Quantitative CMR

Relaxometry:  T1,T2, T2* T1rho

Improved SNR = lower uncertainty

 Diffusion: DWI, DTI, IVIM
e Perfusion: ASL
 Water-Fat: PDFF

SASHA T1 Mapping

1. Peter Kellman & Michael Hansen Journal of Cardiovascular Magnetic Resonance 2014;16:2



Low-field MRI

Shorter acquisition time

M Lower field strength

+ ¥, * Reduced cost

. -~ * Patient comfort
s * Field homogeneities
> ’
b °
Higher SNR Higher resolution
1. Shams Rashid, et al. “Cardiac bSSFP MRI at 0.35 T" Quant Imaging Med Surg 2018;8(7):627-636 5

2. Jose Marques, et al.,, "Low-field MRI: An MR Physics Perspective.” Journal of Magnetic Resonance Imaging 2019



Motivation

Shorter acquisition time

M Lower field strength

+ V¥, ¢ Reduced cost
e Patient comfort

‘ M o _ o
. o * Field homogeneities
Denoising
>
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>
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>
Higher SNR Higher resolution

1. Shams Rashid, et al. “Cardiac bSSFP MRI at 0.35 T" Quant Imaging Med Surg 2018;8(7):627-636
2. Jose Marques, et al.,, "Low-field MRI: An MR Physics Perspective.” Journal of Magnetic Resonance Imaging 2019



NLM and BM3D

Limitations
* Slow
* Required human inputs

NMIG01 = 3 wl) 1)

JEVi
Non-local Mean (MLM) BM3D algorithm
« Average based on self-similarity » Block matching -> 3D stack
instead of distance (i.e. "non-local”) » Shrinkage in the sparse 3D

transformed domain (Wavelet)

1. Antoni Buades, et al. “Non-local Mean.” Computer Vision and Pattern Recognition CVPR 2005.
2. Kostadin Dabov, et al. "BM3D." IEEE Transactions on image processing 2007;16(8):2080-2095.
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(¢) Restored Image

(b) Output Residual Image
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U-NET (skip connection)

output
segmentation
map

L 4L d Lo

Skip Connection

A
bt
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| H"D{ =» conv 3x3, ReLU
t

i copy and crop
D,:’,D L ¥ max pool 2x2

¥ t 4 up-conv 2x2
= CONV 1x1

Sl T —

1. Olaf Ronneberger, et al. "U-NET." MICCA/, Springer, Cham, 2015;p234-241.



dnoiseNET (residual learning + skip connection)

S TE]

Input

Output

.........

(C) . .
> N Skip Connection
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ﬁ 5x5 Conv+Relu @ Channel Concatenation r Copy 1x1 Conv

1. Kai Zhang, et al. “"dnCNN." /EEE Transactions on Image Processing 2017;26(7):3142-3155.
2. Olaf Ronneberger, et al. "U-NET.” MICCAI, Springer, Cham, 2015;p234-241.
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Myocardial ASL Data

* Training and validation data™
« From 22 subjects: 438/40 images for training/validation

* Test data:
* From 6 heart transplant patients: 144 images for testing

* i.I.d Gaussian noise was added to magnitude images

Labeled Image Myocardial Blood Flow (MBF)

Control Image

1. Hung Do, et al. Magnetic Resonance in Medicine 2017;77(5):1975-1980. 11



Quality assessment: MSE, SSIM, and PSNR

Reference i U-NET dnCNN dnoiseNET

Mean £ SD from 144 images in the test set
MSE = 103 x 29.4+£40.0 4.8+5.7 3.8+4.3 4.2+49 2.7+2.6

SSIM = 0.40 £0.15 0.62 £0.10 0.67 £0.12 0.66 £0.12 0.72£0.10

PSNR = 18.6 £5.5 25.21t4.1 26.4+4.3 26.0+4.5 27.6t4.1
Canon




Task-specific quality assessment

NLM U-NET dnCNN dnoiseNET

MBF from denoised method

Negligible bias to
measured MBF

Reference MBF (ml/g/min)

Canon E



T1 mapping

Raw MR images from MOLLI 5(3s)3 T1 map (ms)

dnoiseNET

14



Improved SNR = lower uncertainty
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Standard Deviation (SD)
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T1 Mapping at simulated 0.35 Tesla

dnoiseNET
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T1 Mapping at simulated 0.35 Tesla

/ Improved SD

Referenlce dnoiseNET-0.35TesIa
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Conclusions

dnoiseNET: Residual learning and skip connections
 Superior performance in term of MSE, PSNR, SSIM
« More importantly, it does not introduce any significant bias to quantitative MBF

Quality Assessment:
« MSE, PSNR, SSIM may not be sufficient for quality assessment
* Task-specific quality assessment is desired (MBF in this work)

Future works:
e Low-field MRI

 Other type of noise distributions (Rician, Parallel Imaging Noise, and residual
artifacts from under sampled data, etc.)
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Accuracy vs. Precision

Spatial average over ROl > T,REF

Spatial average over ROl - T,PROP(t )

Spatial SD over ROl - SD(T,PROP(t.))

Accuracy = time average of abs(T,REF - T,PROP(t ))

Bias = T,REF — time average of T,PROP(t)

Precision = time average of SD(T,PROP(t.))

Reproducibility = SD of T,PROP(t )

Inaccurate
(systematic error)

o . o
Imprecise
(reproducibility
error)

Figure 4 lllustration of accuracy versus precision. Accuracy refers
to systematic errors, which create a bias, whereas, precision relates
to the random component due to noise (http//www.jcmr-online.
com/content/15/1/56/figure/F1).

Accurate
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Methods(1): Myocardial Arterial Spin Labeling (ASL)

Myocardial Blood Flow (MBF)
Control Image Labeled Image (perfusion)

Quantification

Coronary artery
disease (CAD)

1. Kober, Frank et al. "Myocardial arterial spin labeling." Journal of Cardiovascular Magnetic Resonance 2016; 18:22.

2. Zun, Zungho et al,, " ASL-CMR Detects Clinically Relevant Increases in Myocardial Blood Flow With Vasodilation.” iJACC 2011; 4(12):1253-1261. 24



