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Non-uniform samples:
• Denser low-frequency 

(closer to the center)
• Sparser high-frequency 

(further away from the 
center)

The non-uniformity must be 
compensated before 
gridding reconstruction to 
avoid the halo artifact.



Professor John Pauly’s Lecture on “Reconstruction of Non-Cartesian Data”, Stanford University



Professor John Pauly’s Lecture on “Reconstruction of Non-Cartesian Data”, Stanford University



Gridding reconstruction without 
density compensation
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SENSE and GRAPPA are 
for Cartesian k-space while 
CG-SENSE is for arbitrary 

k-space trajectories

CG-SENSE reduces 
streaking artifacts and 

improves image sharpness 
for radial MRI
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Cartesian
k-space

FFT 
reconstruction

SENSE
Sensitivity Encoding: 
Parallel Imaging for 
Cartesian k-space
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Pruessmann et al., Magn Reson Med. 1999;42:952-962. 



Griswold et al., Magnetic Resonance in Medicine 47.6 (2002): 1202-1210.



Pruessmann et al., Magnetic Resonance in Medicine 46.4 (2001): 638-651.
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The Semi-convergence Behavior 
of CG-SENSE



50th iteration 7th iteration difference (10x)

Noise amplification



• “Semi-convergence is characterized by initial convergence toward the 
optimal solution but later divergence” (Qu et al., MRM 2005).

• The under-sampled k-space data causes the inverse problem ill-posed, 
which in turns leads to the semi-convergence behavior.

• The semi-convergence is not unique to MRI, it is a feature of the 
Conjugate Gradient or Gradient Descent algorithm when a problem is ill-
posed.



How I troubleshooted when I first encounter the phenomenon:
• My first response, when I saw the grainy (noise-like) artifacts, was to increase the 

number of iterations, hoping that the reconstructed image would come closer 
toward the optimal solution (un-aware of the semi-convergence behavior). 
However, the noise amplification got worse with the higher number of iterations.

• Second, I wondered if the CG implementation has a bug. So, I reimplemented 
different variants of the CG algorithm, but the artifacts remained.

• Third, I implemented simple gradient descent algorithm, but the artifacts persisted.
• Fourth, I inspected the intermediate images and plotted residual norm vs. number 

of iterations. Residual norm behaved funny at high iteration count, but I wasn’t sure 
why. It seems better to stop early before the noise amplification gets worse.

• Finally, I found the Qu et al., MRM2005 and learned about the semi-convergence 
phenomenon.
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Noise 
amplification
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Early stopping
Tikhonov 

regularization



�𝐱𝐱 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐄𝐄𝐄𝐄 −𝐦𝐦 𝟐𝟐
𝟐𝟐 + 𝐑𝐑 𝐱𝐱

m: measured k-space
E: encoding matrix
x: intermediate reconstructed image
R(x): regularization function

Early stopping and Tikhonov regularization mitigate the noise 
amplification, other advanced regularizations also work:
• L1-regularization in the sparsifying transform domain as in 

Compressed Sensing reconstruction,
• Data-driven regularization as in Deep Neural Network-based 

reconstruction, etc.
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