
Interpretable Model, Explainable 
Performance, and Rigorous Validations 

Deep Learning1 has been applied in many stages in 
radiology including administrative assistance, automatic 
and assisted scanning, data acquisition and image 
reconstruction, automatic detection, classification, 
quantification, image interpretation, diagnosis and 
prognosis, and clinical decision support. Although disease 
detection, quantification, and interpretation are popular 
AI-based solutions2,3, the data acquisition and image 
reconstruction play an important role in the whole 
radiology workflow since accurate and high quality 
reconstructed images would provide confidence and 
improved performance of the downstream tasks.

Canon Medical Systems has introduced Advanced 
intelligent Clear-IQ Engine (AiCE) deep learning reconstruc-
tion (DLR)4–6, a novel image reconstruction technique 
based on deep convolutional neural network (CNN), which 
is trained to differentiate Gaussian noise from signal and 
effectively removes noise while maintaining  anatomical 
and pathological integrity allowing the reader to “see 
through the noise.” AiCE performance has been demon-
strated to be robust in clinical practice and generalized to 
variations in noise level, contrast, sequence parameter, scan 
protocol, anatomy, body habitat, and field strength.

Deep learning has successfully evolved to its current 
flourishing state due to three main components, which 
are (i) the availability of large high quality and clean data, 
(ii) advances in algorithm development, and (iii) the 
availability of cheap high-powered parallel computing. 

Among the three components, high-powered parallel 
computing has become ubiquitous and accessible thanks 
to the advent of graphics processing unit (GPU). The first 
two components were leveraged in the development of 
AiCE. First, the AiCE training data was not just standard 
quality images but they were carefully and intensively 
prepared to achieve exceptional image quality. Specifically 
they were acquired with 10 averages resulting in very high 
signal-to-noise ratio (SNR) and high image quality that was 
not clinically practical. Second, the AiCE network 
architecture was designed based on a combination of 
domain expertise (in medical imaging, magnetic 
resonance physics, and signal processing) and innovative 
deep learning algorithm allowing the AiCE model to be 
interpretable. The AiCE model interpretability and rigorous 
validations allow its robust and generalized performance 
to be explainable. Validations include bench testing, 
model observer study, and human observer study.

AiCE Model Interpretability
Deep learning model is referred as a black-box model 

since it is often seen as a process in which a computational 
engine (with a huge number of parameters) transforms 
inputs to desired outputs. The transformation and the 
computation processes are too complex and opaque to 
comprehend hence the name “black-box” model. AiCE 
model, on the other hand, was designed with the basis of 
magnetic resonance physics, medical imaging, and signal 
processing, as shown in Figure 1, where its components 
can be interpreted based on prior knowledge of physics 
and signal processing.
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Figure 1   AiCE’s Interpretable model

Figure 2   Subtracted image contains only noise.

Figure 3   �For each sequence, four randomized label-removed reconstructions (AiCE, NL2, GA43, and GA53) were 
prepared and shared with radiologists for review.
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Bench Testing
The essence of training a deep learning model is not to 

best fit the training data but to generalize (i.e. to perform 
well) to the real-world data (i.e. the data that is unseen 
during model training and tuning). The phenomenon in 
which the deep learning model performs well on the 
training data and validation data but does poorly on the 
unseen data is called overfitting. During model 
development, a learning curve analysis is used to identify 
overfitting (i.e. poor generalization). The learning curve for 
the test data (i.e. the data that is not seen by the model 
during training and tuning) is calculated and visualized to 
confirm that the learning curve of the test data is 
monotonically decreased. 

Common quantitative metrics such as root mean 
square error (RMSE), peak signal-to-noise ratio (PSNR), and 
structure similarity index measure (SSIM) are often used in 
traditional MR image reconstruction and also in machine 
learning and deep learning based MR image 
reconstruction literature to evaluate model performance 
and quality of reconstructed images. These metrics, 
however, are global and fail to capture local image quality 
and fidelity, which is important to medical imaging 
applications. For AiCE, image subtraction (i.e., an image 
without AiCE is subtracted from an image with AiCE) can 
be calculated to evaluate how well AiCE performs both 

globally and locally. AiCE was designed to only remove 
noise from the input image therefore the subtracted 
image is expected to only contain noise, ensuring that the 
anatomical and pathological features are maintained. An 
example of subtracted image is shown in Figure 2, where 
the subtracted image only contains noise. Additionally, 
model observer and human observer studies were 
performed to further evaluate model stability, robustness, 
and generalization beyond global quantitative metrics 
and bench testing.

Model Observer Study
Model observer (MO)7,8 is an important tool for 

evaluating a reconstruction method in medical imaging 
since it is shown that MO performance is correlated with 
human observer performance.9,10 A rigorous MO study 
often involves (i) identifying a clinically relevant task such 
as classification, estimation, or detection, (ii) specifying 
the population, (iii) selecting an observer, which is an 
appropriate mathematical model for the chosen task, 
and (iv) defining a figure of merit, which tells how well 
the observer performs. MO study could evaluate the 
reconstruction method’s performance in terms of 
robustness and stability due to variations in inputs such 
as noise level, contrast level and size of low contrast 
objects, and also variations of different settings of the 

Table 1   �Scoring criteria and instructions.12 In addition to overall image quality assessment, specific anatomical and pathological features were 
also evaluated and scored by radiologists. Clinically relevant anatomical features were identified beforehand while the pathological 
features and findings were identified by radiologists during the review process.

Overall Image Quality Assessment Assessment of Specific Anatomical & Pathological Features

Score Overall Image  
Noise

Overall Image 
Sharpness

Overall Image 
Degradation/

Artifacts

Overall 
Diagnostic 
Confidence

Features 
Sharpness

Features 
Contrast

Features 
Conspicuity

Features 
Diagnostic 
Confidence

1 All structures  
are too noisy

All structures 
are not sharp on 

most images

All structures  
are degraded

Diagnostic 
confidence  
is very poor

Sharpness  
of features  

is very poor

Contrast between 
features and 

surrounding is 
very poor

Features 
conspicuity  
is very poor

Diagnostic 
confidence for the 
reviewed features  

is very poor

2 Most structures 
are too noisy

Most structures 
are not sharp on 

some images

Most structures  
are degraded Poor Poor Poor Poor Poor

3
A few structures 

are noisy on  
most images

Most structures 
are sharp on 
some images

A few structures  
are degraded on  

most images
Fair Fair Fair Fair Fair

4
A few structures 

are noisy on a  
few images

Most structures 
are sharp on 
most images

A few structures are 
degraded on a  

few images
Good Good Good Good Good

5

There is no 
appreciable noise 

on any of the 
relevant images

All structures 
are sharp on all 
relevant images

There is no appreciable 
image degradation 

on any of the relevant 
images

Excellent Excellent Excellent Excellent Excellent
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reconstruction technique. For example, tens of 
thousands of instances (i.e. reconstructed images with 
various combinations of conditions and parameters) can 
be easily evaluated by the MO but it is impractical for 
human observer. It is even more important to perform 
such stability testing since deep learning based 
reconstruction method is shown to be susceptible to 
subtle variations in the input during deployment.11 
Additionally, a MO study could be used to evaluate a 
proposed reconstruction method against established 
predicate methods for specific clinically relevant task 
such as low contrast detection. 

MO studies were carried out to compare the low 
contrast detection performance of AiCE and NL2 (i.e. a 
predicate method). The results show that AiCE performs 
similarly or better compared to the predicate method for 
the low contrast detection task. 

Human Observer Study
An important step in ensuring efficacy and safety of a 

reconstruction method is to perform randomized blinded 
human observer study in which clinical data were 
prospectively collected. The data were collected using 
clinically relevant protocols from multiple scanners, field 
strengths, anatomies, and geographic locations. For each 
sequence, AiCE and three typical predicate methods (NL2, 
GA43, and GA53) were performed resulting 4 different 

reconstructions. The labels of these 4 reconstructions 
were removed and they were randomly ordered and 
shared with ABR-certified radiologists to review and score. 
An example of 4 reconstructions on a sequence in the hip 
protocol is shown in Figure 3.

Clinical Utilizations

AiCE was trained to intelligently and adaptively remove 
noise while maintaining structure integrity allowing one 
to “see through the noise.” The SNR gained could be used 
for acquisition with improved resolution and/or 
shortened scan time. Furthermore, AiCE may enable 
acquisition of high-field liked image quality using the 
lower field scanner without the challenges associated 
with imaging at higher field such as (i) higher equipment 
and operating cost, (ii) higher specific heat absorption 
rate (SAR), and (iii) more artifacts due to higher B0 and B1 
field inhomogeneities. Figures 6-13 are representative 
images from various anatomies that demonstrate the 
robustness, generalization, and potential benefits of AiCE 
in clinical setting. Figures 14-16 show comparison 
between 3T images and AiCE-powered 1.5T images 
acquired with the same resolution and similar scan time 
while other parameters were optimized for appropriate 
contrast at different field strength. 

Figure 4   �Image quality scores for MSK at 1.5T. AiCE has the highest scores in all categories.
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Figure 5   Forced-ranking summary for all anatomies at 1.5T. AiCE is preferred compared to the other reconstructions.

Figure 6   �High resolution shoulder without (left) and with 
(right) AiCE at 3T. 

Figure 7   High resolution ankle without (top) and with (bottom) AiCE at 3T.

Figure 8   �High resolution elbow without (left) and with 
(right) AiCE at 3T. 

Figure 9   High resolution liver without (left) and with (right) AiCE at 1.5T.
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Figure 12   �Higher resolution and shorter scan time Knee with AiCE 
at 3T.

Figure 13   �Higher resolution and shorter scan time Knee with AiCE 
at 1.5T.

Figure 14   �3T images (left) vs. AiCE deep learning based reconstructed 1.5T images (right). The 3T and 1.5T images were acquired with the same 
resolution and similar scan time while the other parameters were optimized for appropriate contrast at different field strength.

Figure 10   �High resolution breast without (top) and with (bottom) 
AiCE at 1.5T. 

Figure 11   �High resolution cardiac without (left) and with (right) 
AiCE at 1.5T.
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Summary

In summary, rigorous validations and 
the synergy between the domain 
expertise and the power of deep learning 
allow AiCE model to be interpretable and 
its robust and generalized performance 
to be explainable. AiCE deep learning 
reconstruction is applicable to all body 
regions where it may enable (i) acquisition 
of high quality MRI images, (ii) acquisition 
with improved resolution and/or shortened 
scan time, and (iii) acquisition of high-field 
liked image quality without the challenges 
associated with high-field system.
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Figure 15   �3T images (left) vs. AiCE deep learning based reconstructed 1.5T images (right). The 3T and 1.5T images were acquired with the same 
resolution and similar scan time while the other parameters were optimized for appropriate contrast at different field strength.

Figure 16   ��3T images (left column) vs. AiCE deep learning based reconstructed 1.5T 
images (right column). The 3T and 1.5T images were acquired with the 
same scan time and resolution while other parameters were optimized for 
appropriate contrast at different field strength.
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*AiCE provides higher SNR compared to typical low pass filters.


