The coupled partial differential equations that form the foundation of classical electromagnetism. The integral (left) and differential (right) form.
\[ \def\oiint{\int\hspace{-2ex}\int\hspace{-3ex}\bigcirc~} \def\Q#1#2{\frac{\partial #1}{\partial #2}} \begin{array}{ll} \displaystyle\oiint(\vec{D}\cdot\vec{n}\,)d^2A=Q_{\rm free,included}~~~~~~~~~~~~~ &\displaystyle\nabla\cdot\vec{D}=\rho_{\rm free}\\ \displaystyle\oiint(\vec{B}\cdot\vec{n}\,)d^2A=0 &\displaystyle\nabla\cdot\vec{B}=0\\ \displaystyle\oint\vec{E}\cdot d\vec{s}=-\frac{d\Phi}{dt} &\displaystyle\nabla\times\vec{E}=-\Q{\vec{B}}{t}\\ \displaystyle\oint\vec{H}\cdot d\vec{s}=I_{\rm free,included}+\frac{d\Psi}{dt} &\displaystyle\nabla\times\vec{H}=\vec{J}_{\rm free}+\Q{\vec{D}}{t} \end{array} \]
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system.
\[ \displaystyle -\frac{\hbar^2}{2m}\nabla^2\psi+U\psi=E\psi=i\hbar\Q{\psi}{t} \]
library(pander)
data("mtcars")
fit <- lm(mpg~wt+cyl, data=mtcars)
pander(fit, type = 'html', title = 'Linear Model Outputs')
 | Estimate | Std. Error | t value | Pr(>|t|) |
---|---|---|---|---|
(Intercept) | 39.69 | 1.715 | 23.14 | 3.043e-20 |
wt | -3.191 | 0.7569 | -4.216 | 0.000222 |
cyl | -1.508 | 0.4147 | -3.636 | 0.001064 |
Hung Do’s Homepage (weblink)